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Abstract

In this paper we review the algorithm development and applications in high resolution shock capturing methods,

level set methods, and PDE based methods in computer vision and image processing. The emphasis is on Stanley

Osher�s contribution in these areas and the impact of his work. We will start with shock capturing methods and will

review the Engquist–Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes, and numerical

schemes for Hamilton–Jacobi type equations. Among level set methods we will review level set calculus, numerical

techniques, fluids and materials, variational approach, high codimension motion, geometric optics, and the compu-

tation of discontinuous solutions to Hamilton–Jacobi equations. Among computer vision and image processing we will

review the total variation model for image denoising, images on implicit surfaces, and the level set method in image

processing and computer vision.
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1. Introduction

This paper is written on the occasion of Stanley Osher�s 60th birthday and serves as a review paper on a

few selected areas in high resolution shock capturing schemes, level set methods, and PDE based methods

in computer vision and image processing. The emphasis is on Stanley Osher�s contribution in these areas

and the impact of his work.

Shock capturing numerical methods have seen revolutionary developments over the past 20 years. These

are methods which deal with the numerical solutions of PDEs with discontinuous solutions. Such PDEs
include nonlinear hyperbolic systems such as Euler equations of compressible gas dynamics. The problems

are difficult because traditional linear numerical methods are either too diffusive, or give unphysical os-

cillations near the discontinuities which can lead to nonlinear instabilities. The class of high resolution

numerical methods overcomes this difficulty to a large extent.

Level set methods have seen tremendously expanded applications in many areas over the past 15 years.

This has been made possible by the flexibility of the level set formulation in dealing with dynamic evolu-

tions and topological changes of curves and surfaces, and by the mathematical theory and numerical tools

developed in the past 15 years in studying these methods.
PDE based methods in computer vision and image processing have been actively studied in the past few

years. Again, the rapid development of mathematical models, solution tools such as level set methods, and

high resolution numerical schemes has made PDE based method one of the major tools in computer vision

and image processing.

Stanley Osher has made influential contributions to all these fields. A distinctive feature of his research is

that he emphasizes both fundamental problems in algorithm design and analysis, and practical consider-

ations for the applications of the algorithms. This seems also to be the objective of the Journal of Com-

putational Physics. It is thus not a surprise that a significant portion of Osher�s journal publications have
appeared in the Journal of Computational Physics. This is particularly the case for Osher�s work over the

past 15 years. Osher�s work has been highly influential, an indication of this being the citation statistics. For

example, according to the ISI database, which lists papers in selected journals of high impact since 1975, the

87 papers of Osher listed there have been collectively cited about 2500 times (as on July 1, 2002, the same

below). Among these, 12 papers have been cited over 100 times each. The top four highly cited papers of

Osher include the paper of Osher and Sethian [145] on level set methods, cited 538 times; the paper of

Harten et al. [78] on ENO schemes, cited 314 times; and the two papers of Shu and Osher [168,169] on ENO

schemes, cited 251 and 250 times, respectively. We remark that all these four papers were published in the
Journal of Computational Physics.

The organization of this paper is as follows. Section 2 is devoted to high resolution shock capturing

methods for problems with discontinuous or otherwise nonsmooth solutions. Section 3 contains a review of

the very popular level set methods. In Section 4 we address PDE based methods in computer vision and

image processing, and finally in Section 5 we give some concluding remarks.

Before ending this section, we remark that early in his career, Osher did a lot of research on the study of

linear stability for finite difference and other numerical methods for hyperbolic, parabolic, and other types

of PDEs, especially those for initial-boundary value problems. This includes for example the work in [127]
which followed up on a seminal paper of Kreiss [100] and used Toeplitz matrices in an elegant way to derive

what was later called the GKS condition [73], and the work in [128] where stability conditions for initial-

boundary value problems for parabolic equations were obtained, generalizing the work of Varah [186]. In

[111], Majda and Osher extended Kreiss� well posedness condition for initial-boundary value problems for

hyperbolic equations to those with uniformly characteristic boundaries. In [110], Majda and Osher ana-

lyzed the reflection of singularities at the boundary for nongrazing reflection for hyperbolic equations. In

[112], Majda and Osher showed how error propagates globally within the domain of dependence for nu-

merical approximations to coupled hyperbolic systems. The paper by Majda et al. [109] was the first to
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recommend the use of smooth cutoff functions on the frequency domain for spectral methods to confine

errors to local regions near propagating discontinuities and for stability. Sharp estimates on the region

of propagation were obtained. These cutoffs are now widely used in the literature and the paper is still

frequently cited, 45 times total, including many in recent years. Finally, in [49], Engquist et al. ob-

tained wavelet based fast algorithms for linear hyperbolic and parabolic equations, and in [46,55,56],

Engquist et al. considered numerical methods for high frequency asymptotics for geometric optics. These

might be considered nonlinear, since the eikonal equation is. We shall not review in detail these early

works of Osher on linear methods in the remaining part of this paper, as they are less directly related to
the objectives of JCP.

2. High resolution shock capturing methods

Shock capturing methods refer to a class of numerical methods for solving problems containing dis-

continuities (shocks, contact discontinuities, or other discontinuities), which can automatically ‘‘capture’’

these discontinuities without special effort to track them. A typical situation would be the solution of a
hyperbolic conservation law, either a scalar equation or a system, either in one spatial dimension

ut þ f ðuÞx ¼ 0 ð2:1Þ

or in multiple (say three) spatial dimensions

ut þ f ðuÞx þ gðuÞy þ hðuÞz ¼ 0: ð2:2Þ

A well-known system of conservation laws is the Euler equations for inviscid fluid flow dynamics. The Euler

equations are rather interesting because the presence of discontinuities forces one to consider weak solu-

tions where the derivatives of solution variables can fail to exist. While a contact discontinuity is essentially

linear, the nonlinear nature of a shock wave discontinuity allows it to develop as the solution progresses

forward in time even if the data are initially smooth. A main ingredient of shock capturing methods is the

conservation form of a scheme, namely, a scheme approximating (2.1) is in the form

duj
dt

þ 1

Dx
f̂fjþ1

2

�
� f̂fj�1

2

�
¼ 0; ð2:3Þ

where uj is an approximation to either the point value uðxj; tÞ or the cell average �uuðxj; tÞ ¼
ð1=DxÞ

R xjþðDx=2Þ
xj�ðDx=2Þ uðx; tÞdx of the exact solution of (2.1), and f̂fjþ1

2
is a numerical flux which typically depends

on a few neighboring points

f̂fjþ1
2
¼ f̂f ðuj�k; uj�kþ1; . . . ; ujþmÞ

and satisfies the following two conditions: it is consistent with the physical flux f ðuÞ in the sense

f̂f ðu; u; . . . ; uÞ ¼ f ðuÞ, and it is at least Lipschitz continuous with respect to all its arguments. Notice that

(2.3) is written in a semi-discrete method of lines form, while in practice the time variable t must also be

discretized. Conservative schemes in the form of (2.3) are especially suitable for computing solutions with

shocks, because of the important Lax–Wendroff theorem, which states that solutions to such schemes, if

convergent, would converge to a weak solution of (2.1). In particular, this means that the computed shocks

will propagate with the correct speed. Almost all shock capturing schemes, including those developed by
Osher and his collaborators, are of the conservation form (2.3). However, there are certain situations

where a relaxation on the strict conservation would be beneficial and would not hurt the convergence to

weak solutions under suitable additional assumptions. The work of Osher and Chakravarthy [134] on the
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‘‘weak conservation form’’ for schemes on general curvilinear coordinates, and the work of Fedkiw et al.

[60] on ‘‘ghost fluid’’ method, which treats the fluid interface in a nonconservative fashion, are such

examples.

2.1. First order monotone schemes

In the late 1970s and early 1980s, designing good first order monotone schemes for (2.1) and (2.2), which

give monotone shock transitions and can be proven to converge to the physically relevant weak solutions

(e.g. [39]), was an active research area. The Godunov scheme is a scheme with the least numerical dissi-

pation among first order monotone schemes, however it is costly to evaluate for complex flux functions

f ðuÞ, and its flux is only Lipschitz continuous but not smoother. The Lax–Friedrichs scheme is easy to

evaluate and very smooth but is excessive dissipative.
In [47,48], Engquist and Osher designed monotone schemes for the transonic potential equations and for

general scalar conservation laws, which are relatively easy to evaluate, are C1 smooth, and have a small

dissipation almost comparable with Gudonov schemes. The main idea is to approximate everything by

rarefaction waves (multi-valued solutions suitably integrated over for shocks). These Engquist–Osher

schemes soon became very popular, especially for implicit type methods and steady state calculations, for

which the extra smoothness of the numerical fluxes helped a lot. Similar schemes for Hamilton–Jacobi

equations were given by Osher and Sethian [145].

Later, Osher [129] and Osher and Solomon [147] generalized these schemes to systems of conservation
laws, obtaining what was later referred to as the Osher scheme in the literature. The Osher scheme for

systems has a closed form formula (for Euler equations of gas dynamics and many other systems), hence no

iterations are needed, unlike the Godunov scheme. It is smoother (C1) than the Godunov scheme and also

has smaller dissipation than the simpler Lax–Friedrichs scheme. Applications of the Osher scheme to the

Euler equations can be found in Chakravarthy and Osher [24].

In [143], Osher and Sanders designed a conservative procedure to handle locally varying time and space

grids for first order monotone schemes, and proved convergence to entropy solutions for such schemes.

These ideas have been used later by Berger and Colella on their adaptive methods, e.g. [9].

2.2. High resolution TVD schemes

First order monotone schemes are certainly nice in their stability and convergence to the correct entropy
solutions, however they are too diffusive for most applications. One would need to use many grid points to

get a reasonable resolution, which seriously restricts their usefulness for multi-dimensional simulations.

In the 1970s and early and mid 1980s, the so-called ‘‘high resolution’’ schemes, i.e., those schemes which

are at least second order accurate and are stable when shocks appear, were developed. These started with

the earlier work of, e.g., the FCT methods of Boris and Book [13], and the MUSCL schemes of van Leer

[185], and moved to Harten�s TVD schemes [77]. Osher and his collaborators did extensive research on

TVD schemes, and contributed significantly towards the analysis of such methods, during this period.

These include the schemes developed and analyzed in [131,132,135], and the very high order (measured by
truncation errors in smooth, monotone regions) TVD schemes in [136].

2.3. Entropy conditions

The entropy condition is an important feature for conservation laws. Because weak solutions are not

unique, entropy conditions are needed to single out a unique, physically relevant solution. Osher and his

collaborators did extensive research on designing and analyzing entropy condition satisfying numerical

methods for conservation laws.
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In [113], Majda and Osher proved that the traditional second order Lax–Wendroff scheme, although

linearly stable, is not L2 stable when solving nonlinear conservation laws with discontinuous solutions. They

then provided a recipe of adding artificial viscosities, such that the scheme maintained second order ac-

curacy yet could be proven convergent to the entropy solution. This scheme is however oscillatory, hence

not very practical in applications.

In [131], Osher provided a general framework to study systematically entropy conditions for numerical

schemes. This was followed by the work of Osher and Chakravarthy [135] in the study of high resolution

schemes and entropy conditions, the work of Osher [132] on generalized MUSCL schemes, the work of
Osher and Tadmor [148] on entropy condition and convergence of high resolution schemes, and the work of

Brenier and Osher [14] on entropy condition satisfying ‘‘maxmod’’ second order schemes. Entropy con-

dition satisfying approximations for the full potential equation of transonic flow were given in [140].

2.4. ENO schemes

In the mid 1980s it was realized that TVD schemes, despite their excellent stability and high resolution

properties, have serious deficiency in that they degenerate to first order at smooth extrema of the solution

[135]. Thus, even though TVD schemes can be designed to any order of accuracy, see for example the

schemes up to 13th order accurate in [136], practical TVD schemes are referred to as second order schemes

since the global L1 errors of any TVD scheme can only be second order, even for smooth, nonmonotone

solutions.
In [79], Harten and Osher relaxed the TVD restriction, and replaced it by a UNO restriction, in that the

total number of numerical extrema does not increase and their amplitudes could be allowed to increase

slightly. The UNO scheme in [79] is uniformly second order accurate including at smooth extrema.

However, it was soon realized that the UNO restriction was still too strong and excluded schemes of higher

than second order. Thus, the concept of ENO, or essentially nonoscillatory, schemes was first given by

Harten et al. [78] in 1987. The clever idea is that of an adaptive stencil, which is chosen based on the local

smoothness of the solution, measured by the Newton divided differences of the numerical solution. Thus the

order of accuracy of the scheme is never reduced, however the local stencil automatically avoids crossing
discontinuities. Such schemes allow both the number of numerical extrema and their amplitudes to in-

crease, however such additional oscillations are controlled on the level of truncation errors even if the

solution is not smooth. ENO schemes have been extremely successful in applications, because they are

simple in concept, allow arbitrary orders of accuracy, and generate sharp, monotone (to the eye) shock

transitions together with high order accuracy in smooth regions of the solution including at the extrema.

The original ENO schemes in [78] are in the cell averaged form, namely they are finite volume schemes

approximating an integrated version of (2.1). Finite volume schemes have the advantage of easy handling of

nonuniform meshes and general geometry in multi-space dimensions, however they are extremely costly in
multi-space dimensions, when the order of accuracy is higher than 2, because then it is not possible to

equate cell averages with point values, as they only agree up to second order accuracy, and a complex

reconstruction procedure is needed to obtain point values from cell averages for evaluating the numerical

fluxes. The cost is also associated with the high order numerical quadratures needed for evaluating the

integration of the numerical fluxes along cell boundaries in multi-dimensions. Later, Shu and Osher

[168,169], developed finite difference based ENO schemes using point values of the numerical solution, but

still in conservation form (2.3). An important observation made in [168] and [169] is that the numerical flux

f̂fjþ1
2
in (2.3) is not a high order approximation to the physical flux at xjþ1

2
: the difference between the nu-

merical flux f̂fjþ1
2
and the physical flux f ðujþ1

2
Þ is OðDx2Þ. This is a common mistake among practitioners of

finite difference schemes. If a high order interpolation on the point values uj is performed to obtain a high

order approximation to ujþ1
2
, and a numerical flux is chosen to approximate f ðujþ1

2
Þ to a high order ac-

curacy, then the scheme is only second order accurate. Correct choice of the numerical fluxes to obtain
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arbitrarily high order accuracy is given in [168,169]. The approach in [169] is especially simple. A detailed

description of the construction and comparison of finite volume and finite difference ENO schemes can be

found in the lecture notes [167].

Also in [168], a class of nonlinearly stable high order Runge–Kutta time discretization methods is de-

veloped. Termed TVD time discretizations, these Runge–Kutta methods have become very popular and

have been used in many schemes. See e.g. [69] for a review of such methods.

Analysis of ENO schemes was given in Harten et al. [80]. Applications of ENO schemes to 2D and 3D

compressible flows, including turbulence and shear flow calculations, were given in Shu et al. [170]. Triangle
based second order nonoscillatory schemes were given in Durlofsky et al. [42]. Nonoscillatory self-similar

maximum principle satisfying high order shock capturing schemes were given in Liu and Osher [106].

Efficient characteristic projection in upwind difference schemes was given in Fedkiw et al. [63]. Convex

ENO schemes without using field-by-field projection were given in Liu and Osher [107]. Chemically reactive

flows were simulated in [62,179].

The popularity of ENO schemes is demonstrated by the citation statistics: among Osher�s four most

highly cited papers mentioned in the introduction, three of them are about ENO schemes, i.e. [78,168,169].

The top cited paper of Osher, [145], is on level set methods but also uses second order ENO schemes for the
numerical solutions and is where the construction of ENO schemes for general Hamilton–Jacobi equations

began.

2.5. WENO schemes

An improvement of ENO scheme is the WENO (weighted ENO) scheme, which was first developed by

Liu et al. [108]. Both ENO and WENO use the idea of adaptive stencils in the reconstruction procedure

based on the local smoothness of the numerical solution to automatically achieve high order accuracy and

nonoscillatory property near discontinuities. ENO uses just one (optimal in some sense) out of many

candidate stencils when doing the reconstruction; while WENO uses a convex combination of all the

candidate stencils, each being assigned a nonlinear weight which depends on the local smoothness of the

numerical solution based on that stencil. WENO improves upon ENO in robustness, better smoothness of
fluxes, better steady state convergence, better provable convergence properties, and more efficiency.

WENO schemes have been further developed later by Jiang and Shu [90] for fifth order accurate finite

difference schemes in one and several space dimensions, by Hu and Shu [82] and Shi et al. [166] for third and

fourth order accurate finite volume schemes in two space dimensions using arbitrary triangulations, and by

Balsara and Shu [6] on very high order WENO schemes. A detailed description can again be found in the

lecture notes [167].

2.6. Hamilton–Jacobi equations

We will now move to the description of Osher�s work in designing schemes for solving Hamilton–Jacobi

equations. Further discussions on this topic will also be given in Section 3 on level set methods.

Consider the 1D Hamilton–Jacobi equation

/t þ Hð/xÞ ¼ 0; ð2:4Þ

which becomes

ð/xÞt þ Hð/xÞx ¼ 0 ð2:5Þ

after taking a spatial derivative of the entire equation. Setting u ¼ /x in Eq. (2.4) results in

ut þ HðuÞx ¼ 0; ð2:6Þ

314 R.P. Fedkiw et al. / Journal of Computational Physics 185 (2003) 309–341



which is a scalar conservation law. Thus in one spatial dimension, a direct correspondence between

Hamilton–Jacobi equations and conservation laws can be drawn. The solution u to conservation law is the

derivative of a solution / to a Hamilton–Jacobi equation. Conversely, the solution / to a Hamilton–Jacobi

equation is the integral of a solution u to a conservation law. This observation leads to a number of useful

facts. For example, since the integral of a discontinuity is a kink (discontinuity in first derivative), solutions

to Hamilton–Jacobi equations can develop kinks in the solution even if the data are initially smooth. In

addition, solutions to Hamilton–Jacobi equations cannot generally develop a discontinuity (unless the

corresponding conservation law solution develops a delta function). Thus, solutions / to Eq. (2.4) are
typically continuous. Furthermore, since conservation laws can have nonunique solutions, one needs to

apply an entropy condition to pick out the ‘‘physically’’ relevant solution to Eq. (2.4).

Viscosity solutions for Hamilton–Jacobi equations were first proposed by Crandall and Lions [37] in

order to pick out the physically relevant solution. In addition, monotone first order accurate numerical

methods were first proven to converge by Crandall and Lions in [38]. In [130], Osher gave explicit formulas

for solutions to the Riemann problems for nonconvex conservation laws and Hamilton–Jacobi equations.

See also the multi-dimensional Riemann solver of Bardi and Osher [7]. These are important for numerical

schemes such as Godunov schemes using such Riemann solvers as building blocks.
In [145], Osher and Sethian, in the context of discussing level set methods, provided a first order

monotone scheme (an adaptation of the Engquist–Osher scheme [48]) and a second order ENO scheme

based on the framework of Shu and Osher [168,169]. In [146], Osher and Shu developed high order ENO

schemes for solving Hamilton–Jacobi equations, using various building blocks including the Lax–Fried-

richs flux, the local Lax–Friedrichs flux, and the Roe flux with an entropy fix. In [101], Lafon and Osher

developed high order 2D triangle based nonoscillatory schemes for solving Hamilton–Jacobi equations.

Later, Jiang and Peng [89] designed WENO schemes for solving Hamilton–Jacobi equations on rectangular

meshes and Zhang and Shu [195] designed WENO schemes for solving Hamilton–Jacobi equations on
arbitrary triangular meshes. WENO scheme turns out to be very useful as the fifth order WENO scheme in

[89] reduces the numerical errors by more than an order of magnitude over the third order accurate HJ

ENO scheme on the same mesh for typical applications.

2.7. Additional topics

Even though it does not exactly fit the title of this section, the work of Lagnado and Osher [102,103] is

worth mentioning. These papers concern solving an inverse problem to compute the volatility in the Eu-

ropean options Black–Scholes model, and they were the first to use PDE techniques to solve this inverse

problem, via gradient descent and Tychonoff regularization, allowing the volatility, a coefficient in a

parabolic equation to be a function of the independent variables, stock price and time. These papers have

attracted a lot of attention after their publication.
Also worth mentioning is the work of Fatemi et al. [57] on using ENO schemes to solve the hy-

drodynamic models of semiconductor device simulations. This was the first work of using high order

shock capturing methods in semiconductor device simulations, and has led to many further develop-

ments, e.g. [23,88].

3. Level set methods

Osher�s most cited paper was [145], joint with Sethian, which introduced the level set method for dy-

namic implicit surfaces. The key idea was the Hamilton–Jacobi approach to numerical solutions of a time

dependent equation for a moving implicit surface. The basic idea is as follows. Define an implicit surface as

the zero isocontour of a function /ð~xxÞ, and suppose that the velocity of each point on the implicit surface is
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given by ~VV ð~xxÞ. Given this velocity field, we wish to move all the points on the surface with this velocity. The

simplest way to do this is to solve the ordinary differential equation

d~xx
dt

¼ ~VV ð~xxÞ ð3:1Þ

for every point ~xx on the implicitly defined surface, i.e., for all ~xx with /ð~xxÞ ¼ 0. This is the Lagrangian

formulation of the interface evolution equation. Since there is generally an infinite number of points on the

front, this means discretizing the front into a finite number of pieces. For example, one could use segments
in two spatial dimensions or triangles in three spatial dimensions. This is not so hard to accomplish if the

connectivity does not change and the surface elements do not distort too much. Unfortunately, even the

most trivial velocity fields can cause large distortion of boundary elements and the accuracy of the method

can deteriorate quickly if one does not periodically modify the discretization in order to account for these

deformations by smoothing and regularizing inaccurate surface elements. In order to avoid problems with

instabilities, deformation of surface elements, and complicated surgical procedures for topological repair of

interfaces, Osher and Sethian [145] proposed using the implicit function / both to represent the interface

and to evolve it. The evolution of the implicit function / is governed by the simple convection equation

/t þ ~VV � r/ ¼ 0: ð3:2Þ

This is an Eulerian formulation of the interface evolution since the interface is captured by the implicit
function / as opposed to being tracked by interface elements as in a Lagrangian formulation. Eq. (3.2) is

sometimes referred to as the level set equation. The velocity field given in Eq. (3.2) can come from a number

of external sources. For example, when the /ð~xxÞ ¼ 0 isocontour represents the interface between two dif-

ferent fluids, the interface velocity is calculated using the two-phase Navier–Stokes equations.

In general, one does not need to specify tangential components when devising a velocity field. Since the

local unit normal to the interface, ~NN , andr/ point in the same direction, ~TT � r/ ¼ 0 for any tangent vector
~TT implying that the tangential velocity components vanish when plugged into the level set equation. For

example, in two spatial dimensions with ~VV ¼ Vn~NN þ Vt~TT , the level set equation

/t þ Vn~NN
�

þ Vt~TT
�
� r/ ¼ 0 ð3:3Þ

is equivalent to

/t þ Vn~NN � r/ ¼ 0: ð3:4Þ

Furthermore, since

~NN � r/ ¼ r/
jr/j � r/ ¼ jr/j2

jr/j ¼ jr/j; ð3:5Þ

Eq. (3.4) can be rewritten as

/t þ Vnjr/j ¼ 0; ð3:6Þ

where Vn is the component of velocity in the normal direction (the normal velocity). Eq. (3.6) is also known

as the level set equation. Eq. (3.2) tends to be used for externally generated velocity fields while Eq. (3.6)

tends to be used for (internally) self-generated velocity fields.

3.1. Level set calculus

In a series of papers that followed [145], Osher and coworkers introduced a level set calculus for the
practical treatment of discretized implicit surfaces defined by time evolving partial differential equations.
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We summarize some of the main points below, but refer the interested reader to the recent review article of

Osher and Fedkiw [138] and the references within. In addition, we refer the reader to the books by Osher

and Fedkiw [139] and by Sethian [163].

Suppose that the surface is implicitly defined as the zero isocontour of a function /ð~xxÞ. Then the local

sign of / can be used to define the inside and outside regions of the domain. That is,~xx0 is inside the interface
when /ð~xx0Þ < 0, outside the interface when /ð~xx0Þ > 0 and on the interface when /ð~xx0Þ ¼ 0. Implicit

functions make simple Boolean operations easy to apply. If /1 and /2 are two different implicit functions,

then /ð~xxÞ ¼ minð/1ð~xxÞ;/2ð~xxÞÞ is the implicit function representing the union of their interior regions.
Similarly, /ð~xxÞ ¼ maxð/1ð~xxÞ;/2ð~xxÞÞ represents the intersection of the interior regions. The complement of

/1ð~xxÞ is /ð~xxÞ ¼ �/1ð~xxÞ, etc.
The gradient of the implicit function, r/, is perpendicular to the isocontours of / pointing in the di-

rection of increasing /. Therefore, if ~xx0 is a point on the zero isocontour of /, the local unit (outward)

normal to the interface is

~NN ¼ r/
jr/j ð3:7Þ

for points on the interface. Eq. (3.7) can be used to define a function ~NN everywhere on the domain em-
bedding the normal in a function ~NN that agrees with the normal for points on the interface. Similarly, the

mean curvature of the interface is defined as the divergence of the normal

j ¼ r � ~NN ð3:8Þ

so that j > 0 for convex regions, j < 0 for concave regions, and j ¼ 0 for a plane.

The characteristic function v� of the interior region X� is defined as

v�ð~xxÞ ¼ 1 if /ð~xxÞ6 0;
0 if /ð~xxÞ > 0;

�
ð3:9Þ

where the boundary is arbitrarily included with the interior region. The characteristic function vþ of the

exterior region Xþ is defined similarly as

vþð~xxÞ ¼ 0 if /ð~xxÞ6 0;
1 if /ð~xxÞ > 0;

�
ð3:10Þ

again including the boundary with the interior region. v	 are functions of a multi-dimensional variable~xx. It
is often more convenient to work with functions of the scalar variable /. Thus, the 1D Heaviside function is

defined as

Hð/Þ ¼ 0 if /6 0;
1 if / > 0;

�
ð3:11Þ

where / depends on~xx although it is not necessary to specify this dependence when working with H . Note

that vþð~xxÞ ¼ Hð/ð~xxÞÞ and v�ð~xxÞ ¼ 1� Hð/ð~xxÞÞ. The volume integral (area integral in R2) of a function f
over the interior region X� is defined asZ

X
f ð~xxÞv�ð~xxÞd~xx; ð3:12Þ

where the region of integration is all of X since v� prunes out the exterior region Xþ automatically. The 1D

Heaviside function can be used to rewrite this volume integral asZ
X
f ð~xxÞð1� Hð/ð~xxÞÞÞd~xx ð3:13Þ
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representing the integral of f over the interior region X�. Similarly,Z
X
f ð~xxÞHð/ð~xxÞÞd~xx ð3:14Þ

is the integral of f over the exterior region Xþ.

By definition, the directional derivative of the Heaviside function H in the normal direction ~NN is the

Dirac delta function

d̂dð~xxÞ ¼ rHð/ð~xxÞÞ � ~NN ; ð3:15Þ

which is a function of the multi-dimensional variable~xx. This distribution is only nonzero on the interface

oX where / ¼ 0. Eq. (3.15) can be rewritten as

d̂dð~xxÞ ¼ H 0ð/ð~xxÞÞr/ð~xxÞ � r/ð~xxÞ
jr/ð~xxÞj ¼ H 0ð/ð~xxÞÞjr/ð~xxÞj ð3:16Þ

using the chain rule to take the gradient of H and the definition of the normal from Eq. (3.7). In one spatial

dimension, the delta function is defined as the derivative of the Heaviside function

dð/Þ ¼ H 0ð/Þ ð3:17Þ

with Hð/Þ defined in Eq. (3.11) above. dð/Þ is identically zero everywhere except where / ¼ 0. Eq. (3.16)

can be rewritten as

d̂dð~xxÞ ¼ dð/ð~xxÞÞjr/ð~xxÞj ð3:18Þ

using the 1D delta function dð/Þ. The surface integral (line integral in R2) of a function f over the boundary

oX is defined asZ
X
f ð~xxÞd̂dð~xxÞd~xx; ð3:19Þ

where the region of integration is all of X since d̂d prunes out everything except oX automatically. The 1D

delta function can be used to rewrite this surface integral asZ
X
f ð~xxÞdð/ð~xxÞÞjr/ð~xxÞjd~xx: ð3:20Þ

Typically, volume integrals are computed by dividing up the interior region, and surface integrals are

computed by dividing up the boundary oX. This requires treating a complex 2D surface in three spatial

dimensions. By embedding the volume and surface integrals in higher dimensions, Eqs. (3.13), (3.14), and

(3.20) avoid the need for identifying inside, outside or boundary regions. Instead the integrals are taken

over the entire region X.

Consider the surface integral in Eq. (3.20) where the 1D delta function needs to be evaluated. Since

dð/Þ ¼ 0 almost everywhere, i.e., except on the lower dimensional interface which has measure zero, it

seems unlikely that any standard numerical approximation based on sampling will give a good approxi-
mation to this integral. Thus, a first order accurate smeared out approximation of dð/Þ is used. First, a

smeared out Heaviside function is defined as

Hð/Þ ¼
0; / < ��;
1
2
þ /

2�
þ 1

2p sin p/
�

� �
; ��6/6 �;

1; � < /;

8<
: ð3:21Þ
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where � is a tunable parameter that determines the size of the bandwidth of numerical smearing. A typically

good value is � ¼ 1:5Dx making the interface width equal to three grid cells when / is normalized to a

signed distance function with jr/j ¼ 1. Then the delta function is defined according to Eq. (3.17) as the

derivative of the Heaviside function

dð/Þ ¼
0; / < ��;
1
2�
þ 1

2�
cos p/

�

� �
; ��6/6 �;

0; � < /;

8<
: ð3:22Þ

where � is determined as above. This delta function allows us to evaluate the surface integral in Eq. (3.20)

using a standard sampling technique such as the midpoint rule. Similarly, the smeared out Heaviside
function in Eq. (3.21) aids in the evaluation of the integrals in Eqs. (3.13) and (3.14).

A distance function dð~xxÞ is defined as

dð~xxÞ ¼ min j~xx�~xxI j over all ~xxI 2 oX; ð3:23Þ

implying that dð~xxÞ ¼ 0 on the boundary where~xx 2 oX. For a given point~xx, suppose that~xxC is the point on

the interface closest to~xx. The line segment from~xx to~xxC is the shortest path from~xx to the interface. In other

words, the path from~xx to~xxC is the path of steepest descent for the function d. Evaluating �rd at any point

on the line segment from~xx to~xxC gives a vector that points from~xx to~xxC. Furthermore, since d is Euclidean

distance

jrdj ¼ 1: ð3:24Þ

A signed distance function is an implicit function / with /ð~xxÞ ¼ dð~xxÞ ¼ 0 for all~xx 2 oX, /ð~xxÞ ¼ �dð~xxÞ for
all ~xx 2 X�, and /ð~xxÞ ¼ dð~xxÞ for all ~xx 2 Xþ. Given a point ~xx, and using the fact that /ð~xxÞ is the signed

distance to the closest point on the interface,

~xxC ¼~xx� /ð~xxÞ~NN ; ð3:25Þ

can be used to calculate the closest point on the interface where ~NN is the local unit normal at~xx.

3.2. Numerical techniques

A key factor for the success of level set methods is the use of high order high resolution type schemes

reviewed in Section 2, for the conservation laws and Hamilton–Jacobi equations. These include in par-

ticular the ENO and WENO schemes.

Even with these high order accurate approaches to solving the Hamilton–Jacobi equations, one can

obtain surprisingly inaccurate results when the level set function solution becomes too steep or too flat, i.e.,
discontinuous or poorly conditioned. In [34], Chopp considered an application where certain regions of the

flow had level sets piling up on each other increasing the local gradient, and other regions of the flow had

level sets that separated from each other flattening out /. In order to reduce the numerical errors caused by

both the steeping and flattening effects, Chopp [34] introduced the notion that one should reinitialize the

level set function periodically throughout the calculation. In [156], Rouy and Tourin proposed a numerical

method for the shape from shading problem that was later generalized into the modern day reinitialization

equation of Sussman et al. [174], using the fact that jrdj ¼ 1, for d the signed or unsigned distance to a

given set.
Unfortunately, this straightforward reinitialization routine can be slow, especially if it needs to be done

every time step although Sussman et al. [174] noted that just a few time iterations are usually needed. In

order to obtain reasonable run times, Chopp [34] restricted the calculations of the interface motion and the

reinitialization to a small band of points near the / ¼ 0 isocontour. This idea of computing solutions to
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Hamilton–Jacobi equations local to the interface has been studied further in the more recent work of

Adalsteinsson and Sethian [1] and Peng et al. [150].

Local methods are important for both solving the Hamilton–Jacobi equation and for reinitializing the

level sets so that they do not become discontinuous or poorly conditioned. However, at least in the re-

initialization case, it is possible to construct an even faster method that only treats each grid point once

while sweeping out from the zero isocontour creating a signed distance function. This algorithm was in-

vented by Tsitsiklis in a pair of papers [181,182]. The most novel part of this algorithm is the extension of

Dijkstra�s algorithm for computing the taxicab metric to an algorithm for computing Euclidean distance.
See for example Sethian [164] and Helmsen et al. [81] for the application of these ‘‘fast marching methods’’

in the level set community.

The great success of level set methods can in part be attributed to the role of curvature in regularizing the

level set function such that the proper vanishing viscosity solution is obtained. It is much more difficult to

obtain vanishing viscosity solutions with Lagrangian methods that faithfully follow the characteristics. For

these methods, one usually has to delete (or add) characteristic information by hand when a shock (or

rarefaction) is detected. This ability of level set methods to identify and delete merging characteristics is

clearly seen in a purely geometrically driven flow where a square is advected inward normal to itself at
constant speed. In the corners of the square, the flow field has merging characteristics that are appropriately

deleted by the level set method. On the other hand, repeating the same calculation with a Lagrangian

numerical method is difficult since characteristics will merge in the corners of the square but not be au-

tomatically deleted. One does not easily obtain the correct viscosity solution. Level set methods are not

perfect however, since they tend to incorrectly delete characteristics in under resolved regions of the flow – a

behavior frequently called ‘‘loss of mass’’ (or volume) in reference to the error it represents when level sets

are used to model incompressible fluid flow. In contrast, despite a lack of explicit enforcement of mass (or

volume) conservation, Lagrangian schemes are quite successful in conserving mass since they preserve
material characteristics for all time, i.e., characteristics are never deleted.

The difficulty stems from the fact that the level set method cannot accurately tell if characteristics merge,

separate, or run parallel in under-resolved regions of the flow. This indeterminacy leads to vanishing vis-

cosity solutions that can incorrectly delete characteristics when they appear to be merging. In [51], Enright

et al. designed a hybrid particle level set method to alleviate the mass loss issues associated with level set

methods. In the case of fluid flows, knowing a priori that there are no shocks present in the fluid velocity

field, one can assert that characteristic information associated with that characteristic field should never be

deleted. Particles are randomly seeded near the interface and passively advected with the flow. When
marker particles cross over the interface, it indicates that characteristic information has been incorrectly

deleted, and these errors are fixed by locally rebuilding the level set function using the characteristic in-

formation present in these escaped marker particles.

3.3. Fluids and materials

Chronologically, the first attempt to use the level set method for flows involving external physics was in

the area of two-phase inviscid compressible flow. Mulder et al. [121] appended the level set equation to the

standard equations for one-phase compressible flow. The level set was advected using the velocity of the

compressible flow field so that the zero level set of / corresponds to particle velocities and can be used to

track an interface separating two different compressible fluids. Later, Karni [92] pointed out that such

method suffered from spurious oscillations at the interface and proposed a nonconservative fix. A more
robust fix was later proposed by Fedkiw et al. [60] by creating a set of fictitious ghost cells on each side of

the interface, and populating these ghost cells with a specially chosen ghost fluid that implicitly captures the

Rankine–Hugoniot jump conditions across the interface. This method was referred to as the ghost fluid

method. Later extensions included the treatment of shocks, detonations, and deflagrations [61], interfaces
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separating compressible flows from incompressible flows [18], and interfaces separating Eulerian discreti-

zations of fluids from Lagrangian discretizations of solids [59]. More recently, both Nguyen et al. [125] and

Glimm et al. [68] have proposed fully conservative versions of this ghost fluid method. Moreover, the

method proposed in [125] is easy to implement in multiple spatial dimensions, works for contacts, shocks,

detonations, and deflagrations, and has been shown to prevent the one grid cell per time step spurious wave

instabilities (identified by [36]) that occur in stiff under-resolved detonation waves.

The earliest real success in the coupling of the level set method to problems involving external physics

came in computing two-phase incompressible flow, in particular see Sussman et al. [174] and Chang et al.
[29]. The Navier–Stokes equations were used to model the fluids on both sides of the interface. Generally,

the fluids will have different densities and viscosities and the presence of surface tension forces cause the

pressure to be discontinuous across the interface as well. Although these early works smeared out these

discontinuous quantities across the interface, this was later remedied by Kang et al. [91] using the methods

developed by Liu et al. [105]. More recently, Nguyen et al. [124] extended these techniques to treat low

speed flames.

A level set regularization procedure was proposed in Harabetian and Osher [75] for ill-posed problems

such as vortex motion in incompressible flows. This regularization, coupled with nonoscillatory numerical
methods for the resulting level set equations, provides a regularization which is topological and is auto-

matically accomplished through the use of numerical schemes whose viscosity shrinks to zero with grid size.

There is no need for explicit filtering, even when singularities appear in the solution. The method also has

the advantage of automatically allowing topological changes such as merging of surfaces.

An application of this procedure for incompressible vortex motion was given in Harabetian et al. [76].

An Eulerian, fixed grid, approach to solve the motion of an incompressible fluid, in two and three di-

mensions, in which the vorticity is concentrated on a lower dimensional set, is provided. The numerical

variables for the level sets are actually smooth, thus allowing for accurate numerical simulations. Numerical
examples including 2D and 3D vortex sheets, 2D vortex dipole sheets, and point vortices, are given.

Level set type analysis was also used to obtain rigorous results identifying the Wulff minimizing shape

and the evolution of growing crystals moving with normal velocity defined as a given positive function of

the normal direction, thus verifying a conjecture of Gross. Moreover it was also shown that the Wulff

energy decreases monotonically under such an evolution to its minimum [141]. A spinoff came in [151]

where it was proven that any 2D Wulff shape can be interpreted as the solution a corresponding Riemann

problem for a scalar conservation law – jumps in the direction of the normal correspond to contact dis-

continuities, smoothly varying thin flat faces correspond to rarefaction curves and planar facets correspond
to constant states. The work in [141] also motivated the derivation of a new class of isoperimetric in-

equalities for convex plane curves [71].

Molecular beam epitaxy (MBE) is a method for growing extremely thin films of material. A new con-

tinuum model for the epitaxial growth of thin films has been developed. This new island dynamics model

has been designed to capture the larger length scale features. The key idea involves the level-set based

motion of islands of various integer levels – see for example [30,74,120].

3.4. A variational approach

In [196] a variational level set approach was developed. Key ideas were the use of a single level set

function for each phase, the gradient projection method of [157] to prevent overlap and/or vacuum, and the

liberal use of the level set calculus as described earlier. This general variational approach has many ap-
plications. The first was to study the behavior of bubbles and droplets in two and three dimensions [197],

for example drops falling or remaining attached to a generally irregular ceiling, and mercury sitting on the

floor. Many problems in engineering design involve optimizing the geometry to maximize a certain design

objective. In [144] the variational level set method was used to analyze a vibrating system whose resonant
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frequency or whose spectral gap is to be optimized subject to constraints on the geometry. This variational

approach has applications in computer vision as well, e.g., snakes and active contours [26]. This will be

discussed further in Section 4.

3.5. High codimension motion

Typically level set methods are used to model codimension one objects, e.g., curves in R2 or surfaces in

R3. In [16], this technology was extended to treat codimension two objects, e.g., curves in R3, using the

intersection of the zero level sets of two functions. This means a curve is determined by

CðtÞ ¼ f~xx j/1ð~xx; tÞ ¼ /2ð~xx; tÞ ¼ 0g:

The geometry of the curve can be derived from /1 and /2. For example, the tangent to the curve is defined

by

~TT ¼ r/1 �r/2

jr/1 �r/2j
:

The curvature times the normal is the derivative of the tangent vector along the curve

j~NN ¼ r~TT �~TT : ð3:26Þ

The normal vectors can be defined by normalizing this quantity

~NN ¼ j~NN

jj~NN j
: ð3:27Þ

The binormal is

~BB ¼
~TT � ~NN

j~TT � ~NN j
:

The torsion times the normal vector is s~NN ¼ �r~BB �~TT . These geometric quantities are all defined numeri-

cally just as in the standard codimension one level set method. Geometric motion of a curve in R3 is thus

obtained by solving coupled systems of two evolution equations. This is done locally near CðtÞ, saving on
storage and complexity. See [16] for results involving merging and breaking which appear to agree with the

reaction–diffusion limit when appropriate. Another application of this idea comes from the following

observation. If we freeze one of the functions, say /1, we can generate the motion of curves on a surface.

Here the surface is defined by f~xx j/1ð~xxÞ ¼ 0g and the evolving curve is defined by the intersection of that

fixed surface with f~xx j/2ð~xx; tÞ ¼ 0g. This is useful for path planning on terrain data, see [33].

3.6. Geometric optics

In [137] a level-set based approach for ray tracing and for the construction of wavefronts in geometric

optics was introduced. The approach automatically handles the multi-valued solutions that appear and

automatically resolves the wavefronts. The key idea, first introduced in [50] in a ‘‘segment projection’’

(rather than a level set) approach, is to use the linear Liouville equation in twice as many independent
variables and solve in this higher dimensional space via the idea introduced in [16]. In 2D ray tracing, this

involves solving for an evolving curve in x; y; h space, where h is the angle of the normal to the curve. This

uses two level set functions and gives codimension 2 motion in 3 space dimension plus time. A local level set

method can be used to make the complexity tractable – Oðn2 logðnÞÞ – for n the number of points on the
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curve for every time iteration. The memory requirement is Oðn2Þ. In 3D ray tracing, this involves solving for

an evolving 2D surface in x; y; z; h;w space, where h and w give the angle of the normal, and results in

codimension 3 motion in 5 space dimension plus time. The complexity goes up by a power of n over the 2D

case, as does the memory requirement. Again, this involves a local level set method, this time using three

level set functions. The interested reader is referred to [159,172] for a different Eulerian approach.

3.7. Computing discontinuous solutions to Hamilton–Jacobi equations

Hamilton–Jacobi equations of the form

/t þ Hð~xx; t;/;r/Þ ¼ 0 ð3:28Þ

have uniformly continuous solutions if H is nondecreasing in /. However, there are interesting cases in

which this hypothesis fails. Moreover, discontinuous initial data are appropriate for some problems in
control theory and differential games. The solution devised in [67] uses the evolution of the level set of an

auxiliary level set equation. The idea has antecedents in [133] where it was proven that, under reasonable

circumstances, the zero level set of the viscosity solution of

/t þ Hð~xx;r/Þ ¼ 0

for H homogeneous of degree one in r/ is the same as the t level set of the viscosity solution of

Hð~xx;rwÞ ¼ 1;

i.e.,

f~xx j/ð~xx; tÞ ¼ 0g ¼ f~xx jwð~xxÞ ¼ tg: ð3:29Þ

This idea was used in [67] to go one dimension higher in Eq. (3.28). This leads to new and successful
numerical methods for a wide class of initial value problems for Hamilton–Jacobi equations with dis-

continuous solutions, see [180].

Fig. 1. The level set method can be used to create impressively smooth surfaces on relatively coarse grids. Here the particle level set

method from [51] was used to represent the interface separating water from air as water is being poured into a glass. For more details,

see [52].

R.P. Fedkiw et al. / Journal of Computational Physics 185 (2003) 309–341 323



3.8. Additional topics

Level set methods have been applied to a variety of other problems as well. They have been used to

compute solutions to Stefan problems to study crystal growth [31,95], to simulate water and fire for

computer graphics applications [52,64,123], and to reconstruct 3D models from arbitrary unorganized data

points [198,199]. Fig. 1 shows an example calculation of water being poured into a glass. Here the level set

method gives a smooth visually realistic appearance to the water surface. Moreover this calculation can be

carried out using a reasonable number of grid cells and without the need for complicated surgical methods

to treat interface pinching and merging. Fig. 2 shows an example calculation of a sphere catching on fire.

Here the level set method allows one to accurately represent the thin flame zone that separates the unre-
acted gaseous fuel from the reacted hot gaseous products. Gaseous expansion can then be accurately

modeled across this interfacial zone. Fig. 3 (left) shows an unorganized data point set extracted from an

Fig. 2. The level set method allows one to accurately represent the thin flame zone that separates the unreacted gaseous fuel from the

reacted hot gaseous products. This allows one to more accurately model the gaseous expansion across this interfacial zone. Here the

level set method is used to simulate a ball catching on fire. For more details, see [123] where these calculations were carried out using

methods first proposed in [124].

Fig. 3. The figure on the left shows an unorganized data point set extracted from an MRI of a rat brain, while the figure on the right

shows a level set reconstruction of the rat brain using only these data points. Note how well the level set method can accurately predict

connectivity. For more details, see [198].
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MRI of a rat brain, while Fig. 3 (right) shows a level set reconstruction of the rat brain using only these

data points. Note how well the level set method can accurately predict connectivity. The use of level set

methods for computer vision will be discussed further in Section 4.

4. Image processing and computer vision

The use of partial differential equations (PDEs) and curvature driven flows in image processing and
computer vision has become an active research topic in the past few years. The basic idea is to deform a

given curve, surface, or image with a PDE, and obtain the desired result as the solution of this PDE.

Sometimes, as in the case of color images, a system of coupled PDEs is used. The art behind this technique

is in the design, analysis, and numerical implementation of these PDEs.

Partial differential equations can be obtained from variational problems. Assume a variational approach

to an image processing problem formulated as a minimization of UðuÞ, whereU is a given energy computed

over the image (or surface) u. LetFð�Þ denote the Euler derivative (first variation) ofU. Since under general

assumptions, a necessary condition for u to be a minimizer of U is that FðuÞ ¼ 0, the (local) minima may
be computed via the steady state solution of the equation

ou
ot

¼ �FðuÞ;

where t is an ‘‘artificial’’ time marching parameter. PDEs obtained in this way have been used already for

quite some time in computer vision and image processing, and the literature is large. The most classical

example is the Dirichlet integral

UðuÞ ¼
Z

jruj2ðxÞdx;

which is associated with the linear heat equation

ou
ot

ðx; tÞ ¼ DuðxÞ:

Extensive research is also being done on the direct derivation of evolution equations which are not nec-

essarily obtained from the energy approaches. The attributes of PDEs in image processing are discussed for

example in [22,161]. In the pioneering paper [2] the authors prove that a few basic image processing
principles naturally lead to PDEs.

Note that when considering PDEs for image processing and numerical implementations, we are dealing

with derivatives of nonsmooth signals, and the right framework must be defined. As introduced by the

image processing group formerly at CEREMADE [2,3], the theory of viscosity solutions provides a

framework for rigorously employing a partial differential formalism, in spite of the fact that the image may

not be smooth enough to give a classical definition to the derivatives involved in the PDE. These works also

showed with a very elegant axiomatic approach the importance of PDEs in image processing.

Ideas on the use of PDEs in image processing go back at least to Gabor [66] and to Jain [87]. The field
took off thanks to the independent works of Koenderink [99] and Witkin [191]. These researchers rigorously

introduced the notion of scale-space, i.e., the representation of images simultaneously at multiple scales. In

their work, the multi-scale image representation is obtained by Gaussian filtering, see below. This is

equivalent to deforming the original image via the classical heat equation, obtaining in this way an isotropic

diffusion flow. In the late 1980s, Hummel [84] noted that the heat flow is not the only parabolic PDE that

can be used to create a scale-space, and indeed argued that an evolution equation which satisfies the
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maximum principle will define a scale-space as well. The maximum principle appears to be a natural

mathematical translation of causality. Koenderink once again made a major contribution into the PDEs

arena when he suggested to add a thresholding operation to the process of Gaussian filtering. As later

suggested by Merriman et al. [118,119] and by Ruuth et al. [158], and proved by a number of groups

[8,53,85,86], this leads to a curvature motion geometric PDE, one of the most famous among geometric

PDEs. In [160], Ruuth et al. extended it to diffusion generated motion of curves in R3. Solving a vector heat

equation and thresholding lead to moving the curve in the direction of the normal with velocity equal to its

curvature.
Perona and Malik�s work [152] on anisotropic diffusion, together with the work by Rudin et al. on total

variation [157] and by Osher and Rudin on shock filters [142], have been among the most influential papers

in the area, explicitly showing the importance of understanding nonlinear PDEs theory to deal with images.

They proposed to replace the linear Gaussian smoothing, equivalent to isotropic diffusion via the heat flow,

by a selective nonlinear diffusion that preserves edges, see below. Their work opened a number of theo-

retical and practical questions that continue to occupy the PDEs image processing community, see e.g.

[3,155]. We should also point out that, at about the same time, Price et al. published a very interesting paper

on the use of Turing�s reaction–diffusion theory for a number of image processing problems [154]. Reaction
diffusion equations were also suggested to create artificial texture [184,193].

Many of the PDEs used in image processing and computer vision are based on moving curves and

surfaces with curvature based velocities. In this area, the level-set numerical method developed by Osher

and Sethian [145], which is reviewed in Section 3, is very influential and examples will be provided later in

this section. The representation of static objects as level sets (zero-sets) is of course not completely new to

the computer vision and image processing communities, since it is one of the fundamental techniques in

mathematical morphology [162]. Considering the image itself as a collection of its level sets, and not just as

the level set of a higher dimensional function, is a key concept in the PDEs community [2]. Implicit surfaces
and level set representations appear in computer graphics as well [12,192].

Other works, like the segmentation approach of Mumford and Shah [122] and the snakes of Kass et al.

[93] have been very influential in the PDEs community as well. More on this will be mentioned below.

It should be noted that a number of the above approaches rely quite heavily on a large number of

mathematical advances in differential geometry for curve evolution [70] and in viscosity solutions theory for

curvature motion (see e.g. [32,54]).

One of the basic ideas behind this area is that the fact that images are represented in digital computers in

the form of discrete objects should not limit the tools to those of discrete mathematics. It is ‘‘legal’’ to use
tools from differential equations and differential geometry, and then deal with the computer implementa-

tion of the algorithms from the point of view of numerical analysis. The result of this approach is then not

only a set of state of the art image processing techniques, but more a new complementary approach to

classical techniques.

The frameworks of PDEs and geometry driven diffusion have been applied to many problems in image

processing and computer vision, since the seminal works mentioned above. Examples include continuous

mathematical morphology, invariant shape analysis, shape from shading, segmentation, tracking, object

detection, optical flow, stereo, image denoising, image sharpening, contrast enhancement, and image
quantization. In this section we provide a few examples of these. Since this is a paper in honor of Osher, the

presentation of the examples is of course biased by his involvement and contributions in the area. Im-

portant sources of literature in the area are the excellent collection of papers in the book edited by Romeny

[155], the book by Guichard and Morel [72] that contains an outstanding description of the topic from the

point of view of iterated infinitesimal filters, Sethian�s book on level sets [163], the book of Osher and

Fedkiw [139], Lindeberg�s book which is a classic in scale-space theory [104], Weickert�s book on aniso-

tropic diffusion in image processing [188], Kimmel�s lecture notes [97], Sapiro�s recent book [161], Toga�s
book on brain warping that includes a number of PDEs based algorithms [178], and the special March 1998
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issue of the IEEE Transactions on Image Processing [22]. The interested reader will find in these publi-

cations some fascinating contributions in the area of PDEs in image processing and computer vision, much

beyond the few introductory examples provided below.

4.1. The total variation model for image denoising

As mentioned above, the use of PDEs for image enhancement has become one of the most active re-

search areas in image processing [22]. In particular, diffusion equations are commonly used for image

regularization, denoising, and multi-scale representations (representing the image simultaneously at several

scales or levels of resolution). This started with the pioneering works in [99,191], where the authors sug-

gested the use of the linear heat flow for this task, given by

ou
ot

¼ Du; ð4:1Þ

where u : X � R2 ! R represents the image gray values (the original noisy image is used as initial condi-

tion). As it is well known, this equation is the gradient-descent ofZ
X
kruk2dX: ð4:2Þ

An example of the effect of the linear heat flow or Laplace Eq. (4.1) is presented in Fig. 4 (the numerical
implementation is based on [157]). It is clear that although this technique can be used to denoise images, it is

also blurring them. That is, not only the noise is being removed, but the edges and the relevant information

is getting destroyed as well. Moreover, it can be shown that edges are destroyed faster than the actual noise

is removed [11]. The effect of this is that if for example this is used as a pre-process for image segmentation

(see Fig. 4), then the exact location of the objects in the image is modified. There is then a need to remove

the noise, and to simplify the image, without disturbing the main objects in it. The approaches now de-

scribed address this issue.

Two directions were taken to address this problem. On one hand, Perona and Malik [152] suggested to
replace the linear heat flow by a PDE that preserves edges. Simultaneously, Rudin et al. [157] started to

look at the modification of the variational problem (4.2). In certain cases, the two directions can be shown

to be equivalent, the PDE being the gradient descent of the proposed variational formulation. Rudin et al.

suggested to replace the linear L2 norm in (4.2) by the edge oriented Total Variation (TV) norm in the

energy, thereby obtainingZ
X
krukdX; ð4:3Þ

Fig. 4. Example of the heat flow (isotropic diffusion). On the left we have the original image and on the middle two different time steps

of the diffusion flow, showing how the image is getting blurred. This blurring impedes the achievement of an accurate segmentation,

right figure. See below for details on the segmentation technique.
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whose gradient descent flow is given by

ou
ot

¼ div
ru

kruk

� �
: ð4:4Þ

We notice that in comparison with the linear heat flow, the TV one has a stopping term of the form 1=kruk.
This helps to preserve edges, as can be seen in Fig. 5 (see [157] for details on the numerical implementation

of this equation). Rudin et al. also suggested to add constraints to this minimization, in order to avoid

reaching the trivial (flat) steady state, thereby improving the results in Fig. 5. In this case the corresponding

Lagrange multiplier is evaluated via a projection method that was found to be useful in other applications

as well, e.g. [144].

From the point of view of edge preservation, the TV flow is optimal if we limit ourselves to convex

functionals [11]. Motivated by the seminal work of Perona and Malik [152] and that of Rudin et al. [157],

significant theoretical and practical studies have been conducted in this kind of anisotropic diffusion flows
in general and the TV flow in particular. Numerical implementation issues have been studied in, e.g.

[25,188,116]. Formal mathematical properties have been studied in, e.g., [3,188], and more recently in [4,5]

with a full study of the TV flow in general dimensions. This work has also in part motivated researchers to

connect wavelets with the TV space, e.g. [35].

To conclude, let us note that the TV model is frequently used as a regularization term for inverse

problems. In Fig. 6, obtained from the work of Chan and Wong [28], we see an example. Full details on this

equation and how the figures have been obtained can be found in [28].

4.2. Images on implicit surfaces

In the last subsection we dealt with images on the plane. There is of course more than that in practice, as

data can be defined on surfaces. In [10] the authors dealt with this issue. A framework for solving varia-

tional problems and partial differential equations for scalar and vector-valued data defined on surfaces was
introduced. The key idea is to implicitly represent the static surface as the level set of a higher dimensional

static function, and solve the surface equations in a fixed Cartesian coordinate system using this new

embedding function. This leads to the use of simple and well-studied numerical techniques instead of

complicated (and not always mathematically justified) implementations. Typically, the software with the

implicit approach described below has only a few lines of code, in contrast with packages based on tri-

angulated surfaces that lead to hundreds, if not thousands, of lines.

Implicit surfaces can be obtained for example from the algorithms in [44,65,176,182,199]. Applications

of PDEs on surfaces include computer graphics [183,184,193], visualization [40], weathering simulation [41],

Fig. 5. Example of the TV flow for anisotropic diffusion. On the left we have the original image and on the middle the result of the

flow, showing how the edges are much better preserved than with the isotropic flow. This allows, for example, to perform accurate

segmentation, as shown on the right (compare to previous figure). See below for details on the segmentation technique.
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vector field computation or interpolation process [153,190], inverse problems [58], and surface parame-

terization [43].
We assume then that the 3D surface S of interest is given in implicit form, as the zero level set of a given

function / : R3 ! R. This function is negative inside the closed bounded region defined by S, positive

outside, Lipschitz continuous a.e., with S � fx 2 R3 : /ðxÞ ¼ 0g. To ensure that the data, which needs not

to be defined outside of the surface originally, is now defined in the whole band, one simple possibility is to

extend this data u defined onS (i.e., the zero level set of /) in such a form that it is constant normal to each

level set of /. This, which is easily realizable [31], is only done if the data is not already defined in the whole

embedding space.

We will exemplify the framework with the simplest case, the heat flow or Laplace equation for scalar
data defined on a surface. For scalar data u defined on the plane, i.e., uðx; yÞ : X � R2 ! R, as we saw

before, the heat flow is given by (4.1), and its corresponding energy by (4.2). If we now want to smooth

scalar data u defined on a surfaceS, i.e., uðx; yÞ : S ! R, we must find the minimizer of the energy given by

1

2

Z
S

krSuk2dS: ð4:5Þ

The equation that minimizes this energy is its gradient descent flow (e.g. [173])

ou
ot

¼ DSu: ð4:6Þ

Here rS is the intrinsic gradient and DS the intrinsic Laplacian or Laplace–Beltrami operator.

Fig. 6. Example of the use of the TV model as a regularization term for inverse problems. The first row shows from left to right the

original image, the out-of-focus blur, and the blurred image. The basic idea is to recover the original image, without knowing the

blurring function, from the blurred data. This problem is known as blind deconvolution. The recovered image and blurring function

are shown on the second row. The technique developed by Chan and Wong uses the TV model of Rudin–Osher–Fatemi for this

problem.
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Classically, Eq. (4.6) would be implemented in a triangulated surface, giving place to sophisticated and

elaborated algorithms even for such simple flows. We now show how to simplify this when considering

implicit representations.

Let~vv be a generic 3D vector, and P~vv the operator that projects a given 3D vector onto the plane orthogonal

to~vv. It is then easy to show that the harmonic energy (4.5) [45] is equivalent to (see for example [171])

1

2

Z
S

kP~NNruk2dS; ð4:7Þ

where ~NN is the normal to the surface S. In other words, rSu ¼ P~NNru. That is, the gradient intrinsic to the

surface (rS) is just the projection onto the surface of the 3D Cartesian (classical) gradient r. We now

embed this in the function /:

1

2

Z
S

krSuk2dS ¼ 1

2

Z
X2R3

kPr/ruk2dð/Þkr/kdx;

where dð�Þ stands for the delta of Dirac, and all the expressions above are considered in the sense of dis-
tributions. Note that first we got rid of intrinsic derivatives by replacing rS by P~NNru (or Pr/ru) and then

replaced the intrinsic integration (
R
S
dS) by the explicit one (

R
X2R3 dx) using the delta function. Intuitively,

although the energy lives in the full space, the delta function forces the penalty to be effective only on the

level set of interest. The gradient descent of this energy is given by

ou
ot

¼ r � ðPr/ruÞ: ð4:8Þ

In other words, this equation corresponds to the intrinsic heat flow for data on an implicit surface. But all

the gradients in this PDE are defined in the 3D Cartesian space, not in the surface S (this is why we need

the data to be defined at least on a band around the surface). The numerical implementation is then

straightforward. Once again, due to the implicit representation, classic numerics are used, avoiding elab-

orate projections onto discrete surfaces and discretization on general meshes, e.g. [83]. The same framework

can be applied to other variational formulations as well as to PDEs defined on surfaces, e.g., the ones

exemplified below [10]. In addition, it can be applied to the TV model described above for images on the

plane. An example of this is presented in Fig. 7. These figures were reproduced from [10], where full nu-
merical details are given.

A particularly interesting example is obtained when we have unit vectors defined on the surface. That is,

we have data of the form u : S ! Sn�1. When n ¼ 3 our unit vectors lie on the sphere. Following the work

[175] for color images defined on the plane, we show in Fig. 8 how to denoise a color image painted on an

implicit surface. The basic idea is to normalize the RGB vector (a 3D vector) to a unit vector representing

the chroma, and diffuse this unit vector with the harmonic maps flow embedded on the implicit surface

extending the intrinsic heat flow example presented above. The corresponding magnitude, representing the

brightness, is smoothed separately via scalar diffusion flows as those presented before for images on the
plane (e.g., an intrinsic TV anisotropic heat flow). That is, we have to regularize a map from the zero level

set onto S2 (the chroma) and another one onto R (the brightness). Details on the use of harmonic maps

equations for this color denoising flow can be found in [175], while [10] gives a full description of the

corresponding intrinsic flow for 3D implicit surface, as it was used to generate Fig. 8. Note that the basic

numerical implementation of these equations, both on the plane [175] and on 3D implicit surfaces [10], are

connected to the techniques presented in [157] to implement the TV flow.

Following the same framework and the work in [183,184,193], we show in Fig. 9 the result of reaction

diffusion flows solved on implicit surfaces in order to generate intrinsic patterns. Once again, the precise
equations are given in [10].
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Finally, inspired by the work on line integral convolution [17] and that on anisotropic diffusion [152], the

authors of [40] suggested to use anisotropic diffusion to visualize flows in 2D and 3D. The basic idea is,

starting from a random image, anisotropically diffuse it in the directions dictated by the flow field. The

Fig. 7. Intrinsic heat flow (first row, original, and 15 and 50 iterations, respectively) and TV flow (second row, original, and 50 and 90

iterations, respectively) for data defined on surfaces. Note how as expected, the heat flow blurs the data while the TV flow removes the

noise while preserving the sharp edges (constraints on the noise have been added to the flow).

Fig. 8. Intrinsic vector field regularization. Left: original color image. Middle: heavy noise has been added to the three color channels.

Right: color image reconstructed after 20 steps of anisotropic diffusion of the chroma vectors.

Fig. 9. Texture synthesis via intrinsic reaction–diffusion flows on implicit surfaces. Left: isotropic. Right: anisotropic.
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authors presented very nice results both in 2D (flows on the plane) and 3D (flows on a surface), but once

again using triangulated surfaces which introduce many computational difficulties. In a straightforward

fashion we can compute these anisotropic diffusion equations on implicit surfaces with the framework from

[10] that we have just described, and some results are presented in Fig. 10. See [10] for the exact visuali-

zation equations and their numerical implementation.

4.3. The level set method in image processing and computer vision

We now present a number of examples on the use of the Osher–Sethian level set method reviewed in

Section 3 for problems in image processing and computer vision, in particular for image segmentation.

One of the most popular applications of level set methods in image processing and computer vision is for

image segmentation. The contributions in this area started shortly after the work in [96] (which is one of the
first papers in computer vision using the level set method) by the works in [19,114,115]. These authors

showed how to embed in the level set framework the pioneering work on snakes and active contours by

Kass et al. [93].

Consider the image on the left of Fig. 11. Kass et al. suggested to detect the objects in this image

(segment the image) starting with a curve that surrounds the object/s, and letting the curve deform (active-

contour/snake) toward the boundary of the objects. The deformation is driven by the minimization of a

Fig. 10. Flow visualization on implicit 3D surfaces via intrinsic anisotropic diffusion flows. Left: flow aligned with the major principal

direction of the surface. Right: flow aligned with the minor principal direction of the surface. Pseudo-color representation of scalar

data is used.

Fig. 11. Level-set based object segmentation. The first figure on the left shows the original image and original contour, surrounding an

unknown number of objects. The results of the geodesic active contours is given in the middle image (see the mentioned work of

Caselles–Kimmel–Sapiro for details on the numerical implementation of this geodesic flow). The properties of using the level set

framework are clear in this example. It not only allows for very accurate computations of geometric characteristics such as curvature

but also freely permits topological changes, thereby detecting all of the unknown number of objects. The image in the right is a result of

the geodesic active contours framework implemented following Cohen and Kimmel.
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given energy that penalizes nonsmooth curves that do not sit at the objects boundaries. The authors of [93]

proposed a Lagrangian implementation of the curve deformation process, while Caselles et al. [21] and

Malladi et al. [114] pioneered the use of the level set method for this approach. This added the classical

topological freedom, thereby allowing the detection of multiple objects without prior knowledge of their

number. Later McInerney and Terzopoulos showed a technique based on Lagrangian implementation to

achieve this [117]. Following this work, in [20] (see also [21,94,149,165,177,189] for pioneering extensions of

this to object tracking), the authors showed that both approaches can be formally unified if one considers

an energy given by

EðCÞ ¼
Z
C

gðCÞds; ð4:9Þ

where ds is the Euclidean arc-length over the deforming curve C : ½a; b� ! R2 and gð�Þ is a function that

penalizes curves that do not sit on the objects boundaries (a function of the image gradient for example).

That is, image segmentation has been translated into finding a curve minimizing (4.9), thereby a geodesic in

a space with metric gð�Þ. The geodesic was computed using the level set method. Examples are provided in

Fig. 11.

When describing image segmentation, variational problems, and PDEs, we can not avoid but think

about the famous Mumford–Shah contribution [122], and ask ourselves the relationship between these
techniques. Some of this relationship is described in [161], while additional one comes to light from recent

works connecting the Mumford–Shah model and level set techniques, see for example the results by

Paragios and Deriche [149], by Yezzi and Soatto [194], and by Chan and Vese [27,187]. One of the ideas in

this direction is presented in [27,187], which is inspired in part by Zhao et al. [196]. In [27,187], multiple

phases and their boundaries, represented via the level set method, evolve and interact in time, to minimize a

bulk-surface energy. Combining several level set functions together, triple junctions were also represented

and evolved in time. Based on these ideas, Chan and Vese presented a multi-phase level set model for image

segmentation. Triple junctions and complex topologies are segmented using more than one level set
function. An example is provided in Fig. 12, while details are given in their paper. In this example, a multi-

phase model with four phases is used, obtained by combining two level set functions. Here, the phases and

their boundaries evolve in time, by minimizing an energy related to the Mumford–Shah piecewise-constant

model for segmentation. We show the evolution of the curves and of the four phases, in a level set

framework.

Fig. 12. Evolution of the four-phase segmentation model from [27], using two level set functions: evolving curves (top) and phases

(bottom). The fundamental use of the level set implementation is once again observed here, since the splitting and merging of the

evolving curves is automatically handled, with no programming effort.
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4.4. Shape from shading

According to the so called Lambertian shading rule, the 2D array of pixel gray levels, corresponding to

the shading of a 3D object, is proportional to the cosine of the angle between the light source direction and

the surface normal. The shape from shading problem is the inverse problem of reconstructing the 3D

surface from this shading data. The history of this problem is extensive. Here we describe a basic technique,

developed by Kimmel and Bruckstein [98] to address this problem. We remark that this work by Kimmel

and Bruckstein on shape from shading using curve evolution and level sets is inspired in part by the work of

Osher in [133]. This presents the general connection between the unsteady and steady approaches to curve

and surface evolution. An outstanding contribution to the problem was done in [156], based on the theory
of viscosity solutions, see also [126]. More details and an extensive literature can be found in these refer-

ences.

Consider a smooth surface, actually a graph, given by zðx; yÞ. According to the Lambertian shading rule,

the shading image Iðx; yÞ is equal (or proportional) to the inner product between the light direction

l̂l ¼ ð0; 0; 1Þ and the normal ~NNðx; yÞ to the parameterized surface. This gives the so called irradiance

equation

Fig. 13. Example of shape from shading via curve evolution. The figure shows the original surface, the simulated shading, the re-

constructed surface, and the reconstruction error.
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Iðx; yÞ ¼ l̂l � ~NN ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ;

where p :¼ oz=ox and q :¼ oz=oy. Starting from a small circle around a singular point, Bruckstein [15]

observed that equal height contours Cðp; tÞ : S ! R2 of the surface z (t stands for the height) hold

oC

ot
¼ Iffiffiffiffiffiffiffiffiffiffiffiffiffi

1� I2
p ~nn;

where now ~nn is the 2D unit normal to the equal height contour (or level set of z). This means that the

classical shape from shading problem is simply a curve evolution problem, and as so, we can use all the

curve evolution machinery to solve it. In particular, we can use both the level set and the fast marching

numerical techniques (the weight for the distance is always positive and given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=I2 � 1

p
). An example,

courtesy of the authors of [98], is presented in Fig. 13. This shows another example of how, without being

directly involved in this, Osher�s work in numerical analysis has influenced a classical problem in computer

vision.

5. Concluding remarks

In this paper, we have reviewed some of the major contributions of Stanley Osher to the broad area of
scientific computation. It is clear from the works we have reviewed, and from the references to his papers in

the literature, that Osher�s contributions are not limited to the areas where he is directly involved. An

example of this is image segmentation, where his work with colleagues on level set and multi-phase motion

has been crucial for others to produce state-of-the-art results. The simulation of natural phenomena in

computer graphics is yet another example of how people are using his contributions in a completely dif-

ferent area. Another more recent example is his contribution, shared with Harten and other colleagues, on

ENO and its derivations, currently being used in wavelets and approximation theory, without Osher being

directly involved in that line of research. The fact that his research has reached such diverse disciplines is
truly remarkable. Some of Osher�s characteristics and contributions are not written in any of his papers.

Still at 60, he is full of ideas and energy, and has a fundamental characteristic for doing good research: He

considers science fun! (let us not forget that his last name comes from the Hebrew word ‘‘happiness’’). We

are looking forward to seeing Osher�s contributions in the next 60 years, though most probably somebody

else will have to write the review.
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